vllm.config ¶
Modules:
| Name | Description |
|---|---|
cache | |
compilation | |
kv_events | |
kv_transfer | |
load | |
lora | |
multimodal | |
parallel | |
scheduler | |
speculative | |
utils | |
ConvertOption module-attribute ¶
ConvertOption = Literal[
"auto", "none", "embed", "classify", "reward"
]
DataclassInstanceT module-attribute ¶
DataclassInstanceT = TypeVar(
"DataclassInstanceT", bound=DataclassInstance
)
GuidedDecodingBackend module-attribute ¶
GuidedDecodingBackend = Literal[
"auto",
"xgrammar",
"guidance",
"outlines",
"lm-format-enforcer",
]
ModelDType module-attribute ¶
ModelDType = Literal[
"auto",
"half",
"float16",
"bfloat16",
"float",
"float32",
]
TaskOption module-attribute ¶
TaskOption = Literal[
"auto",
"generate",
"embedding",
"embed",
"classify",
"score",
"reward",
"transcription",
"draft",
]
_FLOAT16_NOT_SUPPORTED_MODELS module-attribute ¶
_FLOAT16_NOT_SUPPORTED_MODELS = {
"gemma2": "Numerical instability. Please use bfloat16 or float32 instead.",
"gemma3": "Numerical instability. Please use bfloat16 or float32 instead.",
"gemma3_text": "Numerical instability. Please use bfloat16 or float32 instead.",
"plamo2": "Numerical instability. Please use bfloat16 or float32 instead.",
"glm4": "Numerical instability. Please use bfloat16 or float32 instead.",
}
_RUNNER_CONVERTS module-attribute ¶
_RUNNER_CONVERTS: dict[RunnerType, list[ConvertType]] = {
"generate": [],
"pooling": ["embed", "classify", "reward"],
"draft": [],
}
_RUNNER_TASKS module-attribute ¶
_RUNNER_TASKS: dict[RunnerType, list[TaskOption]] = {
"generate": ["generate", "transcription"],
"pooling": [
"embedding",
"embed",
"classify",
"score",
"reward",
],
"draft": ["draft"],
}
_ResolvedTask module-attribute ¶
_ResolvedTask = Literal[
"generate",
"transcription",
"encode",
"embed",
"classify",
"reward",
"draft",
]
_STR_DTYPE_TO_TORCH_DTYPE module-attribute ¶
_STR_DTYPE_TO_TORCH_DTYPE = {
"half": float16,
"float16": float16,
"float": float32,
"float32": float32,
"bfloat16": bfloat16,
}
_SUFFIX_TO_DEFAULTS module-attribute ¶
_SUFFIX_TO_DEFAULTS: list[
tuple[str, tuple[RunnerType, ConvertType]]
] = [
("ForCausalLM", ("generate", "none")),
("ForConditionalGeneration", ("generate", "none")),
("ChatModel", ("generate", "none")),
("LMHeadModel", ("generate", "none")),
("ForTextEncoding", ("pooling", "embed")),
("EmbeddingModel", ("pooling", "embed")),
("ForSequenceClassification", ("pooling", "classify")),
("ForAudioClassification", ("pooling", "classify")),
("ForImageClassification", ("pooling", "classify")),
("ForVideoClassification", ("pooling", "classify")),
("ClassificationModel", ("pooling", "classify")),
("ForRewardModeling", ("pooling", "reward")),
("RewardModel", ("pooling", "reward")),
("Model", ("pooling", "embed")),
]
DecodingConfig ¶
Dataclass which contains the decoding strategy of the engine.
Source code in vllm/config/__init__.py
backend class-attribute instance-attribute ¶
backend: GuidedDecodingBackend = 'auto'
Which engine will be used for guided decoding (JSON schema / regex etc) by default. With "auto", we will make opinionated choices based on request contents and what the backend libraries currently support, so the behavior is subject to change in each release.
disable_additional_properties class-attribute instance-attribute ¶
disable_additional_properties: bool = False
If True, the guidance backend will not use additionalProperties in the JSON schema. This is only supported for the guidance backend and is used to better align its behaviour with outlines and xgrammar.
disable_any_whitespace class-attribute instance-attribute ¶
disable_any_whitespace: bool = False
If True, the model will not generate any whitespace during guided decoding. This is only supported for xgrammar and guidance backends.
disable_fallback class-attribute instance-attribute ¶
disable_fallback: bool = False
If True, vLLM will not fallback to a different backend on error.
reasoning_backend class-attribute instance-attribute ¶
reasoning_backend: str = ''
Select the reasoning parser depending on the model that you're using. This is used to parse the reasoning content into OpenAI API format.
__post_init__ ¶
Source code in vllm/config/__init__.py
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/__init__.py
DeviceConfig ¶
Configuration for the device to use for vLLM execution.
Source code in vllm/config/__init__.py
device class-attribute instance-attribute ¶
Device type for vLLM execution. This parameter is deprecated and will be removed in a future release. It will now be set automatically based on the current platform.
device_type class-attribute instance-attribute ¶
Device type from the current platform. This is set in __post_init__.
__post_init__ ¶
Source code in vllm/config/__init__.py
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/__init__.py
ModelConfig ¶
Configuration for the model.
Source code in vllm/config/__init__.py
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 | |
allowed_local_media_path class-attribute instance-attribute ¶
allowed_local_media_path: str = ''
Allowing API requests to read local images or videos from directories specified by the server file system. This is a security risk. Should only be enabled in trusted environments.
code_revision class-attribute instance-attribute ¶
The specific revision to use for the model code on the Hugging Face Hub. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
config_format class-attribute instance-attribute ¶
config_format: Union[str, ConfigFormat] = 'auto'
The format of the model config to load:
-
"auto" will try to load the config in hf format if available else it will try to load in mistral format.
-
"hf" will load the config in hf format.
-
"mistral" will load the config in mistral format.
convert class-attribute instance-attribute ¶
convert: ConvertOption = 'auto'
Convert the model using adapters defined in vllm.model_executor.models.adapters. The most common use case is to adapt a text generation model to be used for pooling tasks.
disable_cascade_attn class-attribute instance-attribute ¶
disable_cascade_attn: bool = False
Disable cascade attention for V1. While cascade attention does not change the mathematical correctness, disabling it could be useful for preventing potential numerical issues. Note that even if this is set to False, cascade attention will be only used when the heuristic tells that it's beneficial.
disable_sliding_window class-attribute instance-attribute ¶
disable_sliding_window: bool = False
Whether to disable sliding window. If True, we will disable the sliding window functionality of the model, capping to sliding window size. If the model does not support sliding window, this argument is ignored.
dtype class-attribute instance-attribute ¶
dtype: Union[ModelDType, dtype] = 'auto'
Data type for model weights and activations:
-
"auto" will use FP16 precision for FP32 and FP16 models, and BF16 precision for BF16 models.
-
"half" for FP16. Recommended for AWQ quantization.
-
"float16" is the same as "half".
-
"bfloat16" for a balance between precision and range.
-
"float" is shorthand for FP32 precision.
-
"float32" for FP32 precision.
enable_prompt_embeds class-attribute instance-attribute ¶
enable_prompt_embeds: bool = False
If True, enables passing text embeddings as inputs via the prompt_embeds key. Note that enabling this will double the time required for graph compilation.
enable_sleep_mode class-attribute instance-attribute ¶
enable_sleep_mode: bool = False
Enable sleep mode for the engine (only cuda platform is supported).
enforce_eager class-attribute instance-attribute ¶
enforce_eager: bool = False
Whether to always use eager-mode PyTorch. If True, we will disable CUDA graph and always execute the model in eager mode. If False, we will use CUDA graph and eager execution in hybrid for maximal performance and flexibility.
generation_config class-attribute instance-attribute ¶
generation_config: str = 'auto'
The folder path to the generation config. Defaults to "auto", the generation config will be loaded from model path. If set to "vllm", no generation config is loaded, vLLM defaults will be used. If set to a folder path, the generation config will be loaded from the specified folder path. If max_new_tokens is specified in generation config, then it sets a server-wide limit on the number of output tokens for all requests.
head_dtype property ¶
head_dtype: dtype
"head" refers to the last Linear layer(s) of an LLM, such as the lm_head in a generation model, or the score or classifier in a classification model.
head_dtype currently only supports pooling models.
- The pooling model defaults to using fp32 head, you can use --hf-overrides '{"head_dtype": "model"}' to disable it.
hf_config_path class-attribute instance-attribute ¶
Name or path of the Hugging Face config to use. If unspecified, model name or path will be used.
hf_overrides class-attribute instance-attribute ¶
hf_overrides: HfOverrides = field(default_factory=dict)
If a dictionary, contains arguments to be forwarded to the Hugging Face config. If a callable, it is called to update the HuggingFace config.
hf_token class-attribute instance-attribute ¶
The token to use as HTTP bearer authorization for remote files . If True, will use the token generated when running huggingface-cli login (stored in ~/.huggingface).
io_processor_plugin class-attribute instance-attribute ¶
IOProcessor plugin name to load at model startup
logits_processor_pattern class-attribute instance-attribute ¶
Optional regex pattern specifying valid logits processor qualified names that can be passed with the logits_processors extra completion argument. Defaults to None, which allows no processors.
logits_processors class-attribute instance-attribute ¶
One or more logits processors' fully-qualified class names or class definitions
logprobs_mode class-attribute instance-attribute ¶
logprobs_mode: LogprobsMode = RAW_LOGPROBS
Indicates the content returned in the logprobs and prompt_logprobs. Supported mode: 1) raw_logprobs, 2) processed_logprobs, 3) raw_logits, 4) processed_logits. Raw means the values before applying any logit processors, like bad words. Processed means the values after applying all processors, including temperature and top_k/top_p.
max_logprobs class-attribute instance-attribute ¶
max_logprobs: int = 20
Maximum number of log probabilities to return when logprobs is specified in SamplingParams. The default value comes the default for the OpenAI Chat Completions API. -1 means no cap, i.e. all (output_length * vocab_size) logprobs are allowed to be returned and it may cause OOM.
max_model_len class-attribute instance-attribute ¶
max_model_len: SkipValidation[int] = None
Model context length (prompt and output). If unspecified, will be automatically derived from the model config.
When passing via --max-model-len, supports k/m/g/K/M/G in human-readable format. Examples:
-
1k -> 1000
-
1K -> 1024
-
25.6k -> 25,600
max_seq_len_to_capture class-attribute instance-attribute ¶
max_seq_len_to_capture: int = 8192
Maximum sequence len covered by CUDA graphs. When a sequence has context length larger than this, we fall back to eager mode. Additionally for encoder-decoder models, if the sequence length of the encoder input is larger than this, we fall back to the eager mode.
model class-attribute instance-attribute ¶
model: str = 'Qwen/Qwen3-0.6B'
Name or path of the Hugging Face model to use. It is also used as the content for model_name tag in metrics output when served_model_name is not specified.
model_impl class-attribute instance-attribute ¶
Which implementation of the model to use:
-
"auto" will try to use the vLLM implementation, if it exists, and fall back to the Transformers implementation if no vLLM implementation is available.
-
"vllm" will use the vLLM model implementation.
-
"transformers" will use the Transformers model implementation.
-
"terratorch" will use the TerraTorch model implementation.
multimodal_config class-attribute instance-attribute ¶
multimodal_config: Optional[MultiModalConfig] = None
override_attention_dtype class-attribute instance-attribute ¶
Override dtype for attention
override_generation_config class-attribute instance-attribute ¶
Overrides or sets generation config. e.g. {"temperature": 0.5}. If used with --generation-config auto, the override parameters will be merged with the default config from the model. If used with --generation-config vllm, only the override parameters are used.
override_pooler_config class-attribute instance-attribute ¶
override_pooler_config: Optional[
Union[dict, PoolerConfig]
] = None
Initialize non-default pooling config or override default pooling config for the pooling model. e.g. {"pooling_type": "mean", "normalize": false}.
pooler_config class-attribute instance-attribute ¶
pooler_config: Optional[PoolerConfig] = field(init=False)
Pooler config which controls the behaviour of output pooling in pooling models.
quantization class-attribute instance-attribute ¶
quantization: SkipValidation[
Optional[QuantizationMethods]
] = None
Method used to quantize the weights. If None, we first check the quantization_config attribute in the model config file. If that is None, we assume the model weights are not quantized and use dtype to determine the data type of the weights.
revision class-attribute instance-attribute ¶
The specific model version to use. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
rope_scaling class-attribute instance-attribute ¶
RoPE scaling configuration. For example, {"rope_type":"dynamic","factor":2.0}.
rope_theta class-attribute instance-attribute ¶
RoPE theta. Use with rope_scaling. In some cases, changing the RoPE theta improves the performance of the scaled model.
runner class-attribute instance-attribute ¶
runner: RunnerOption = 'auto'
The type of model runner to use. Each vLLM instance only supports one model runner, even if the same model can be used for multiple types.
seed class-attribute instance-attribute ¶
Random seed for reproducibility. Initialized to None in V0, but initialized to 0 in V1.
served_model_name class-attribute instance-attribute ¶
The model name(s) used in the API. If multiple names are provided, the server will respond to any of the provided names. The model name in the model field of a response will be the first name in this list. If not specified, the model name will be the same as the --model argument. Noted that this name(s) will also be used in model_name tag content of prometheus metrics, if multiple names provided, metrics tag will take the first one.
skip_tokenizer_init class-attribute instance-attribute ¶
skip_tokenizer_init: bool = False
Skip initialization of tokenizer and detokenizer. Expects valid prompt_token_ids and None for prompt from the input. The generated output will contain token ids.
spec_target_max_model_len class-attribute instance-attribute ¶
Specify the maximum length for spec decoding draft models.
task class-attribute instance-attribute ¶
task: Optional[TaskOption] = None
[DEPRECATED] The task to use the model for. If the model supports more than one model runner, this is used to select which model runner to run.
Note that the model may support other tasks using the same model runner.
tokenizer class-attribute instance-attribute ¶
tokenizer: SkipValidation[str] = None
Name or path of the Hugging Face tokenizer to use. If unspecified, model name or path will be used.
tokenizer_mode class-attribute instance-attribute ¶
tokenizer_mode: TokenizerMode = 'auto'
Tokenizer mode:
-
"auto" will use the fast tokenizer if available.
-
"slow" will always use the slow tokenizer.
-
"mistral" will always use the tokenizer from
mistral_common. -
"custom" will use --tokenizer to select the preregistered tokenizer.
tokenizer_revision class-attribute instance-attribute ¶
The specific revision to use for the tokenizer on the Hugging Face Hub. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
trust_remote_code class-attribute instance-attribute ¶
trust_remote_code: bool = False
Trust remote code (e.g., from HuggingFace) when downloading the model and tokenizer.
use_async_output_proc class-attribute instance-attribute ¶
use_async_output_proc: bool = True
Whether to use async output processor.
__post_init__ ¶
__post_init__(
limit_mm_per_prompt: Optional[dict[str, int]],
media_io_kwargs: Optional[dict[str, dict[str, Any]]],
mm_processor_kwargs: Optional[dict[str, Any]],
mm_processor_cache_gb: Optional[float],
mm_processor_cache_type: Optional[MMCacheType],
mm_shm_cache_max_object_size_mb: Optional[int],
mm_encoder_tp_mode: Optional[MMEncoderTPMode],
interleave_mm_strings: Optional[bool],
skip_mm_profiling: Optional[bool],
) -> None
Source code in vllm/config/__init__.py
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 | |
_get_convert_type ¶
_get_convert_type(
architectures: list[str],
runner_type: RunnerType,
convert: ConvertOption,
) -> ConvertType
Source code in vllm/config/__init__.py
_get_default_convert_type ¶
_get_default_convert_type(
architectures: list[str], runner_type: RunnerType
) -> ConvertType
Source code in vllm/config/__init__.py
_get_default_pooling_task ¶
Source code in vllm/config/__init__.py
_get_default_runner_type ¶
_get_default_runner_type(
architectures: list[str],
) -> RunnerType
Source code in vllm/config/__init__.py
_get_encoder_config ¶
_get_runner_type ¶
_get_runner_type(
architectures: list[str], runner: RunnerOption
) -> RunnerType
Source code in vllm/config/__init__.py
_get_supported_generation_tasks ¶
_get_supported_generation_tasks(
architectures: list[str], convert_type: ConvertType
) -> list[_ResolvedTask]
Source code in vllm/config/__init__.py
_get_supported_pooling_tasks ¶
_get_supported_pooling_tasks(
architectures: list[str], convert_type: ConvertType
) -> list[_ResolvedTask]
Source code in vllm/config/__init__.py
_get_supported_tasks ¶
_get_supported_tasks(
architectures: list[str],
runner_type: RunnerType,
convert_type: ConvertType,
) -> list[_ResolvedTask]
Source code in vllm/config/__init__.py
_get_transformers_backend_cls ¶
_get_transformers_backend_cls() -> str
Determine which Transformers backend class will be used if model_impl is set to transformers or auto.
Source code in vllm/config/__init__.py
_init_pooler_config ¶
_init_pooler_config() -> Optional[PoolerConfig]
Source code in vllm/config/__init__.py
_parse_quant_hf_config ¶
Source code in vllm/config/__init__.py
_verify_bnb_config ¶
The current version of bitsandbytes (0.46.1) with 8-bit models does not yet support CUDA graph.
TODO Remove this when bitsandbytes supports.¶
Source code in vllm/config/__init__.py
_verify_cuda_graph ¶
Source code in vllm/config/__init__.py
_verify_quantization ¶
Source code in vllm/config/__init__.py
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 | |
_verify_tokenizer_mode ¶
Source code in vllm/config/__init__.py
_verify_with_expert_parallelism ¶
Source code in vllm/config/__init__.py
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/__init__.py
get_and_verify_max_len ¶
get_and_verify_max_len(max_model_len: int)
Source code in vllm/config/__init__.py
get_diff_sampling_param ¶
This method returns a dictionary containing the non-default sampling parameters with override_generation_config applied.
The default sampling parameters are:
- vLLM's neutral defaults if
self.generation_config="vllm" - the model's defaults if
self.generation_config="auto" - as defined in
generation_config.jsonifself.generation_config="path/to/generation_config/dir"
Returns:
| Type | Description |
|---|---|
dict[str, Any] | A dictionary containing the non-default sampling parameters. |
Source code in vllm/config/__init__.py
get_head_size ¶
get_head_size() -> int
Source code in vllm/config/__init__.py
get_layers_start_end_indices ¶
get_layers_start_end_indices(
parallel_config: ParallelConfig,
) -> tuple[int, int]
Source code in vllm/config/__init__.py
get_mamba_chunk_size ¶
Returns the mamba chunk size if it exists
Source code in vllm/config/__init__.py
get_multimodal_config ¶
get_multimodal_config() -> MultiModalConfig
Get the multimodal configuration of the model.
Raises:
| Type | Description |
|---|---|
ValueError | If the model is not multimodal. |
Source code in vllm/config/__init__.py
get_num_attention_heads ¶
get_num_attention_heads(
parallel_config: ParallelConfig,
) -> int
get_num_kv_heads ¶
get_num_kv_heads(parallel_config: ParallelConfig) -> int
Returns the number of KV heads per GPU.
Source code in vllm/config/__init__.py
get_num_layers ¶
get_num_layers(parallel_config: ParallelConfig) -> int
get_num_layers_by_block_type ¶
get_num_layers_by_block_type(
parallel_config: ParallelConfig,
block_type: LayerBlockType = attention,
) -> int
Source code in vllm/config/__init__.py
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 | |
get_sliding_window ¶
get_total_num_kv_heads ¶
get_total_num_kv_heads() -> int
Returns the total number of KV heads.
Source code in vllm/config/__init__.py
maybe_pull_model_tokenizer_for_runai ¶
Pull model/tokenizer from Object Storage to temporary directory when needed.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model | str | Model name or path | required |
tokenizer | str | Tokenizer name or path | required |
Source code in vllm/config/__init__.py
try_get_generation_config ¶
This method attempts to retrieve the non-default values of the generation config for this model.
The generation config can contain information about special tokens, as well as sampling parameters. Which is why this method exists separately to get_diff_sampling_param.
Returns:
| Type | Description |
|---|---|
dict[str, Any] | A dictionary containing the non-default generation config. |
Source code in vllm/config/__init__.py
validate_model_config_after ¶
validate_model_config_after() -> ModelConfig
Source code in vllm/config/__init__.py
validate_quantization_before classmethod ¶
verify_async_output_proc ¶
Source code in vllm/config/__init__.py
verify_dual_chunk_attention_config ¶
verify_dual_chunk_attention_config(
load_config: LoadConfig,
) -> None
Source code in vllm/config/__init__.py
verify_with_parallel_config ¶
verify_with_parallel_config(
parallel_config: ParallelConfig,
) -> None
Source code in vllm/config/__init__.py
ModelImpl ¶
Source code in vllm/config/__init__.py
ObservabilityConfig ¶
Configuration for observability - metrics and tracing.
Source code in vllm/config/__init__.py
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 | |
collect_detailed_traces class-attribute instance-attribute ¶
collect_detailed_traces: Optional[
list[DetailedTraceModules]
] = None
It makes sense to set this only if --otlp-traces-endpoint is set. If set, it will collect detailed traces for the specified modules. This involves use of possibly costly and or blocking operations and hence might have a performance impact.
Note that collecting detailed timing information for each request can be expensive.
collect_model_execute_time cached property ¶
collect_model_execute_time: bool
Whether to collect model execute time for the request.
collect_model_forward_time cached property ¶
collect_model_forward_time: bool
Whether to collect model forward time for the request.
otlp_traces_endpoint class-attribute instance-attribute ¶
Target URL to which OpenTelemetry traces will be sent.
show_hidden_metrics cached property ¶
show_hidden_metrics: bool
Check if the hidden metrics should be shown.
show_hidden_metrics_for_version class-attribute instance-attribute ¶
Enable deprecated Prometheus metrics that have been hidden since the specified version. For example, if a previously deprecated metric has been hidden since the v0.7.0 release, you use --show-hidden-metrics-for-version=0.7 as a temporary escape hatch while you migrate to new metrics. The metric is likely to be removed completely in an upcoming release.
__post_init__ ¶
Source code in vllm/config/__init__.py
_parse_collect_detailed_traces ¶
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/__init__.py
PoolerConfig ¶
Controls the behavior of output pooling in pooling models.
Source code in vllm/config/__init__.py
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 | |
activation class-attribute instance-attribute ¶
Whether to apply activation function to the classification outputs. Defaults to True.
dimensions class-attribute instance-attribute ¶
Reduce the dimensions of embeddings if model support matryoshka representation. Defaults to None.
enable_chunked_processing class-attribute instance-attribute ¶
Whether to enable chunked processing for long inputs that exceed the model's maximum position embeddings. When enabled, long inputs will be split into chunks, processed separately, and then aggregated using weighted averaging. This allows embedding models to handle arbitrarily long text without CUDA errors. Defaults to False.
logit_bias class-attribute instance-attribute ¶
If provided, apply classification logit biases. Defaults to None.
max_embed_len class-attribute instance-attribute ¶
Maximum input length allowed for embedding generation. When set, allows inputs longer than max_embed_len to be accepted for embedding models. When an input exceeds max_embed_len, it will be handled according to the original max_model_len validation logic. Defaults to None (i.e. set to max_model_len).
normalize class-attribute instance-attribute ¶
Whether to normalize the embeddings outputs. Defaults to True.
pooling_type class-attribute instance-attribute ¶
The pooling method of the pooling model. This should be a key in vllm.model_executor.layers.pooler.PoolingType.
returned_token_ids class-attribute instance-attribute ¶
A list of indices for the vocabulary dimensions to be extracted, such as the token IDs of good_token and bad_token in the math-shepherd-mistral-7b-prm model.
softmax class-attribute instance-attribute ¶
Whether to apply softmax to the reward outputs. Defaults to True.
step_tag_id class-attribute instance-attribute ¶
If set, only the score corresponding to the step_tag_id in the generated sentence should be returned. Otherwise, the scores for all tokens are returned.
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/__init__.py
SpeechToTextConfig ¶
Configuration for speech-to-text models.
Source code in vllm/config/__init__.py
max_audio_clip_s class-attribute instance-attribute ¶
max_audio_clip_s: int = 30
Maximum duration in seconds for a single audio clip without chunking. Audio longer than this will be split into smaller chunks if allow_audio_chunking evaluates to True, otherwise it will be rejected.
min_energy_split_window_size class-attribute instance-attribute ¶
Window size in samples for finding low-energy (quiet) regions to split audio chunks. The algorithm looks for the quietest moment within this window to minimize cutting through speech. Default 1600 samples ≈ 100ms at 16kHz. If None, no chunking will be done.
SupportsHash ¶
SupportsMetricsInfo ¶
VllmConfig ¶
Dataclass which contains all vllm-related configuration. This simplifies passing around the distinct configurations in the codebase.
Source code in vllm/config/__init__.py
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 | |
additional_config class-attribute instance-attribute ¶
additional_config: Union[dict, SupportsHash] = field(
default_factory=dict
)
Additional config for specified platform. Different platforms may support different configs. Make sure the configs are valid for the platform you are using. Contents must be hashable.
cache_config class-attribute instance-attribute ¶
cache_config: CacheConfig = field(
default_factory=CacheConfig
)
Cache configuration.
compilation_config class-attribute instance-attribute ¶
compilation_config: CompilationConfig = field(
default_factory=CompilationConfig
)
torch.compile and cudagraph capture configuration for the model.
As a shorthand, -O<n> can be used to directly specify the compilation level n: -O3 is equivalent to -O.level=3 (same as -O='{"level":3}'). Currently, -O
NOTE: level 0 is the default level without any optimization. level 1 and 2 are for internal testing only. level 3 is the recommended level for production, also default in V1.
You can specify the full compilation config like so: {"level": 3, "cudagraph_capture_sizes": [1, 2, 4, 8]}
decoding_config class-attribute instance-attribute ¶
decoding_config: DecodingConfig = field(
default_factory=DecodingConfig
)
Decoding configuration.
device_config class-attribute instance-attribute ¶
device_config: DeviceConfig = field(
default_factory=DeviceConfig
)
Device configuration.
kv_events_config class-attribute instance-attribute ¶
kv_events_config: Optional[KVEventsConfig] = None
The configurations for event publishing.
kv_transfer_config class-attribute instance-attribute ¶
kv_transfer_config: Optional[KVTransferConfig] = None
The configurations for distributed KV cache transfer.
load_config class-attribute instance-attribute ¶
load_config: LoadConfig = field(default_factory=LoadConfig)
Load configuration.
lora_config class-attribute instance-attribute ¶
lora_config: Optional[LoRAConfig] = None
LoRA configuration.
model_config class-attribute instance-attribute ¶
model_config: ModelConfig = None
Model configuration.
observability_config class-attribute instance-attribute ¶
observability_config: Optional[ObservabilityConfig] = None
Observability configuration.
parallel_config class-attribute instance-attribute ¶
parallel_config: ParallelConfig = field(
default_factory=ParallelConfig
)
Parallel configuration.
quant_config class-attribute instance-attribute ¶
quant_config: Optional[QuantizationConfig] = None
Quantization configuration.
scheduler_config class-attribute instance-attribute ¶
scheduler_config: SchedulerConfig = field(
default_factory=SchedulerConfig
)
Scheduler configuration.
speculative_config class-attribute instance-attribute ¶
speculative_config: Optional[SpeculativeConfig] = None
Speculative decoding configuration.
__post_init__ ¶
Verify configs are valid & consistent with each other.
Source code in vllm/config/__init__.py
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 | |
__str__ ¶
Source code in vllm/config/__init__.py
_get_quantization_config staticmethod ¶
_get_quantization_config(
model_config: ModelConfig, load_config: LoadConfig
) -> Optional[QuantizationConfig]
Get the quantization config.
Source code in vllm/config/__init__.py
_set_cudagraph_sizes ¶
vLLM defines the default candidate list of batch sizes for CUDA graph capture as:
```python max_graph_size = min(max_num_seqs * 2, 512)
1, 2, 4, then multiples of 8 up to max_graph_size¶
cuda_graph_sizes = [1, 2, 4, 8, 16, 24, 32, 40, ..., max_graph_size]
In the end, vllm_config.compilation_config.cudagraph_capture_sizes will be the final sizes to capture cudagraph (in descending order).
These sizes are used to capture and reuse CUDA graphs for performance-critical paths (e.g., decoding). Capturing enables significantly faster kernel dispatch by avoiding Python overhead. The list is then filtered based on max_num_batched_tokens (e.g., 8192 on most GPUs), which controls the total allowed number of tokens in a batch. Since each sequence may have a variable number of tokens, the maximum usable batch size will depend on actual sequence lengths.
Example: With max_num_batched_tokens = 8192, and typical sequences averaging ~32 tokens, most practical batch sizes fall below 256. However, the system will still allow capture sizes up to 512 if shape and memory permit.
Note: If users explicitly specify cudagraph capture sizes in the compilation config, those will override this default logic. At runtime:
- If batch size <= one of the `cudagraph_capture_sizes`, the closest
padded CUDA graph will be used.
- If batch size > largest `cudagraph_capture_sizes`, cudagraph will
not be used.
Source code in vllm/config/__init__.py
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 | |
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/__init__.py
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 | |
get_quantization_config staticmethod ¶
get_quantization_config(
model_config: ModelConfig, load_config: LoadConfig
) -> Optional[QuantizationConfig]
Source code in vllm/config/__init__.py
pad_for_cudagraph ¶
Source code in vllm/config/__init__.py
recalculate_max_model_len ¶
recalculate_max_model_len(max_model_len: int)
Source code in vllm/config/__init__.py
try_verify_and_update_config ¶
Source code in vllm/config/__init__.py
update_sizes_for_sequence_parallelism ¶
Source code in vllm/config/__init__.py
with_hf_config ¶
with_hf_config(
hf_config: PretrainedConfig,
architectures: Optional[list[str]] = None,
) -> VllmConfig
Source code in vllm/config/__init__.py
_check_valid_dtype ¶
Source code in vllm/config/__init__.py
_find_dtype ¶
Source code in vllm/config/__init__.py
_get_and_verify_dtype ¶
_get_and_verify_dtype(
model_id: str,
config: PretrainedConfig,
dtype: Union[str, dtype],
*,
is_pooling_model: bool,
revision: Optional[str] = None,
) -> dtype
Source code in vllm/config/__init__.py
_get_and_verify_max_len ¶
_get_and_verify_max_len(
hf_config: PretrainedConfig,
tokenizer_config: Optional[dict],
max_model_len: Optional[int],
disable_sliding_window: bool,
sliding_window: Optional[int],
spec_target_max_model_len: Optional[int] = None,
encoder_config: Optional[Any] = None,
) -> int
Get and verify the model's maximum length.
Source code in vllm/config/__init__.py
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 | |
_get_head_dtype ¶
Source code in vllm/config/__init__.py
_is_valid_dtype ¶
_resolve_auto_dtype ¶
Source code in vllm/config/__init__.py
assert_hashable ¶
Source code in vllm/config/__init__.py
contains_object_print ¶
Check if the text looks like a printed Python object, e.g. contains any substring matching the pattern: "at 0xFFFFFFF>" We match against 0x followed by 2-16 hex chars (there's a max of 16 on a 64-bit system).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
text | str | The text to check | required |
Returns:
| Name | Type | Description |
|---|---|---|
result | bool |
|
Source code in vllm/config/__init__.py
get_attr_docs ¶
Get any docstrings placed after attribute assignments in a class body.
https://davidism.com/mit-license/
Source code in vllm/config/__init__.py
get_cached_compilation_config cached ¶
Cache config to avoid repeated calls to get_current_vllm_config()
get_current_model_prefix ¶
get_current_model_prefix() -> str
Get the prefix of the model that's currently being initialized.
get_current_vllm_config ¶
get_current_vllm_config() -> VllmConfig
Source code in vllm/config/__init__.py
get_layers_from_vllm_config ¶
get_layers_from_vllm_config(
vllm_config: VllmConfig,
layer_type: type[T],
layer_names: Optional[list[str]] = None,
) -> dict[str, T]
Get layers from the vLLM config.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
vllm_config | VllmConfig | The vLLM config. | required |
layer_type | type[T] | The type of the layer to get. | required |
layer_names | Optional[list[str]] | The names of the layers to get. If None, return all layers. | None |
Source code in vllm/config/__init__.py
get_served_model_name ¶
If the input is a non-empty list, the first model_name in served_model_name is taken. If the input is a non-empty string, it is used directly. For cases where the input is either an empty string or an empty list, the fallback is to use self.model.
Source code in vllm/config/__init__.py
is_init_field ¶
is_init_field(cls: ConfigType, name: str) -> bool
iter_architecture_defaults ¶
set_current_vllm_config ¶
set_current_vllm_config(
vllm_config: VllmConfig,
check_compile=False,
prefix: Optional[str] = None,
)
Temporarily set the current vLLM config. Used during model initialization. We save the current vLLM config in a global variable, so that all modules can access it, e.g. custom ops can access the vLLM config to determine how to dispatch.
Source code in vllm/config/__init__.py
try_match_architecture_defaults ¶
try_match_architecture_defaults(
architecture: str,
*,
runner_type: Optional[RunnerType] = None,
convert_type: Optional[ConvertType] = None,
) -> Optional[tuple[str, tuple[RunnerType, ConvertType]]]
Source code in vllm/config/__init__.py
update_config ¶
update_config(
config: DataclassInstanceT, overrides: dict[str, Any]
) -> DataclassInstanceT